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Abstract
Recent progress in developing statistical mechanical theories of supercooled polymer melts and
glasses is reviewed. The focus is on those approaches that are either explicitly formulated for
polymers, or are applications of more generic theories to interpret polymeric phenomena. These
include two configurational entropy theories, a percolated free volume distribution model, and
the activated barrier hopping nonlinear Langevin theory. Both chemically-specific and universal
aspects are discussed. After a brief summary of classic phenomenological approaches, a
discussion of the relevant length scales and key experimental phenomena in both the
supercooled liquid and glassy solid state is presented including ageing and nonlinear
mechanical response. The central concepts that underlie the theories in the molten state are then
summarized and key predictions discussed, including the glass transition in oriented polymer
liquids and deformed rubber networks. Physical ageing occurs in the nonequilibrium glass, and
theories for its consequences on the alpha relaxation are discussed. Very recent progress in
developing a segment scale theory for the dramatic effects of external stress on polymer glasses,
including acceleration of relaxation, yielding, plastic flow and strain hardening, is summarized.
The article concludes with a discussion of outstanding theoretical challenges.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Dense polymeric liquids and amorphous solids are a vast class
of materials of exceptional technological significance [1–4]. In
most cases, chemical synthesis results in quenched disorder
at the single chain level which precludes crystallization and
hence glasses unavoidably form upon cooling. Polymers are
characterized by high chemical diversity on local scales, and
(quasi) universal features on intermediate and longer length
scales [5–7]. In most applications, polymer glasses are used at
temperatures close to the kinetic glass transition temperature,
Tg, and hence nonequilibrium physical ageing is of paramount
importance [2, 8]. The nonlinear mechanical response to
applied stress is a fascinating problem in nonequilibrium
statistical physics, which is of critical engineering relevance
and has been experimentally studied in depth [2, 4, 9]. In
the literature and at international glass dynamics meetings
one often hears the opinion expressed that ‘polymers are
different’ or ‘too complicated’. We disagree, and believe the
rich glassy phenomena exhibited by these materials provide
an exceptional opportunity for fundamental scientific inquiry
within the context of condensed matter physics.

To set the stage for the discussion of dynamics, we
first summarize the chemical complexities of polymers and
relevant equilibrium features. Long chain molecules are
characterized by structure on multiple length scales, and in
both theoretical and simulation studies some coarse graining
is unavoidable. Figure 1 illustrates this in the context of a
polyethylene chain. There are several ‘chemical’ (Angstrom)
length scales at the monomer level (diameter d < nm).
Rotational isomerism [5] results in randomization of the chain
backbone beyond a material-specific, but weakly temperature-
dependent, persistence (lp) or Kuhn (lK) length, typically of
order ∼0.6–1.5 nm. These backbone stiffness correlation
lengths are given by [5]:

lK � 2lp ≈ C∞lb. (1)

The required structural parameters in equation (1) are usually
defined via the macromolecular mean square end-to-end
distance: 〈R2〉 = NbbCNl2

b , where CN (typically ∼4–10) is
the material-specific characteristic ratio, Nbb the number of
backbone bonds, and lb an average chemical bond length. The
characteristic ratio typically increases with Nbb, saturating at a
chemically-specific degree of polymerization. These stiffness
length scales have qualitatively the same physical meaning as
the ‘statistical segment length’, σ , beyond which the polymer
is a flexible random walk. The definition of the latter is not
unique. To reproduce equilibrium single chain correlations

Figure 1. Illustration of coarse graining of a polyethylene chain,
showing encapsulation of local structure within statistical segments
of size σ . Inset: schematic of a polymer melt at the segmental scale.
Slow dynamics results from the forces exerted on a tagged segment
(red; light) by nearby segments on different chains (blue; dark).

on intermediate ‘self-similar’ length scales (d � r � Rg)

requires

σ =
√

C∞lb (2)

where 〈R2〉 = Nσ 2, N is the number of segments, and
C∞ is the long chain limit of CN . The collective density
fluctuation correlation length in polymer liquids is similar to
small molecule fluids [10], ξρ ∼ d .

Segment scale relaxation has a fast (beta) component,
and a much slower alpha process which is the focus of this
article. The alpha relaxation in polymers is independent of
chain length in the N 	 1 limit. It sets the timescale
for even slower dynamical motions associated with chain
connectivity (figure 1) and uncrossability (entanglement)
which depend explicitly on N [5–7]. In contrast to other glassy
materials, the alpha relaxation does not determine macroscopic
diffusion and viscosity. However, all the other aspects of
glassy materials composed of small elementary units [11]
are relevant to polymers, including average properties (e.g.,
alpha relaxation time and characteristic temperatures, and
their chemistry, pressure and chain length dependences)
and dynamic fluctuation phenomena (e.g., nonexponential
relaxation, decoupling effects). Cold polymer melts are
characterized by a remarkably broad variation of behavior for
all these aspects. The ability to tune macromolecular size
allows the unique opportunity to probe dynamic heterogeneity
as a function of time and length scale at fixed chemistry
and intermolecular forces. The focus of this article is recent
theoretical progress relevant to slow segmental dynamics
in bulk, homogeneous, one-component polymer liquids and
glasses.
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1.1. Classic phenomenological approaches

Two venerable phenomenological approaches are widely
employed to interpret glassy polymer relaxation. One is
the ‘free volume’ model (FVM) based on kinetic blocking
where mobility requires the accumulation of a critical amount
of ‘open space’ via ‘diffusing defects’. Unfortunately, free
volume is ill-defined and not directly measurable. Based on
simple assumptions about the temperature dependence of the
free volume, the mean alpha relaxation time is [11, 12]:

τα

τ0
= exp

(
b

V

V f

)
lg

(
τα

τ0

)
� −C1(T − Tref)

T − T0
(3)

where τ0 is an elementary timescale, b a number of order unity,
V (Vf) the molar (free) volume, C1 a nonuniversal parameter,
Tref a reference temperature (typically ∼ Tg), and at T0 > 0
the free volume vanishes and the relaxation time diverges in
an essential singularity manner. Polymer-specific aspects enter
only implicitly and empirically.

A second class of theories is centered on the thermody-
namic configurational entropy often, but not always, supple-
mented with a literal entropy crisis or catastrophe at a nonzero
Kauzmann temperature [1, 11], Sc(T = TK) → 0. Adams
and Gibbs (AG) postulated this entropy determines the alpha
relaxation time as [11, 13]:

τ = τ0 exp

[
β�μ

S∗
c

Sc(T )

]
(4)

where β = 1/kBT is the inverse thermal energy, and �μ

(S∗
c ) is the high-temperature non-collective activation energy

(configurational entropy). If Sc(T ) is approximated as a
linear function of temperature, then the classic Vogel–Fulcher–
Tamman (VFT) result follows:

τα = τ0 exp

(
DTK

T − TK

)
(5)

which is the same form as the FVM if one identifies
TK = T0. Dynamics is activated with a barrier proportional
to the number of elementary units z∗ = S∗

c /Sc(T ) that
move simultaneously in a cooperatively rearranging region
(CRR). What constitutes an ‘elementary unit’ is fundamentally
ambiguous since theories invoke, to varying degrees, some
coarse graining, and a precise definition of ‘cooperativity’
is absent. The literal entropy crisis approach was worked
out in great detail for simple lattice models by diMarzio and
co-workers [14–16] based on the assumption that TK is a
direct indication of the laboratory Tg. Configurational entropy
is particularly hard to define for polymers given the many
intrachain degrees of freedom and the usual nonexistence of
a crystalline reference state.

The vast majority of physical ageing theories for polymer
glasses are highly phenomenological [11, 12]. Perhaps the
most famous is the Tool–Narayanaswamy–Moynihan (TNM)
model [17], which can provide good fits of some measurements
based on adjustable parameters such as the fictive temperature
and ‘nonlinearity parameter’. A first order kinetic equation
is typically postulated for a structural or thermodynamic

variable (e.g., configurational entropy, free volume) that is
assumed to control segmental relaxation, which then results in
a nonequilibrium time evolution of the relaxation time.

The phenomenological Eyring model is still widely
employed as a conceptual and fitting framework for describing
stress-induced yielding and nonlinear mechanical response in
polymer glasses [4, 9, 18]. It assumes τα reflects a simple
Arrhenius activated hopping process (potential energy EA) of
an undefined elementary unit. Applied stress (τ ) results in a
linear reduction of the barrier of a mechanical work form:

τα(T, τ ) = τ0 exp[(EA − τV ∗)/kBT ] (6)

where V ∗ is a temperature-independent ‘activation volume’.
The dynamic yield stress, τy, signals a mechanically-induced
‘solid-to-liquid’ transition resulting in irreversible (local for
polymers) plastic flow identified as when τα(T, τy) ≈ γ̇ −1.
Equation (6) combined with the latter condition results in an
explicit expression for the yield stress:

τy = EA

V ∗ + kBT

V ∗ ln(γ̇ τ0). (7)

Equation (7) predicts: (i) the rate-independent contribution
to the yield stress is a temperature-independent material
constant, (ii) the temperature and strain rate dependences enter
in a multiplicative fashion, and (iii) τy grows linearly with
temperature and logarithmic strain rate. The Eyring model
has been applied to essentially all glass forming materials;
polymer-specific aspects enter only empirically via its three
adjustable parameters.

Experimental and simulation studies have raised se-
rious concerns about the Eyring model for glassy poly-
mers [9, 19–23]. For example, (a) the extracted values of V ∗
vary enormously (∼1–20 nm3) with no structural correlation,
(b) the activation volume depends on stress or strain, (c) the
strain rate dependence of τy is nearly temperature indepen-
dent or gets stronger with cooling, and (d) the rate-independent
contribution to τy is not temperature independent but rather in-
creases with cooling. The yielding behavior of polymer glasses
is also sensitive to physical ageing which is not included in the
Eyring model. At ultra-high strains polymers undergo mas-
sive conformational deformations, resulting in a large stress in-
crease in the post-yield regime due to ‘strain hardening’ [4, 9]
which the Eyring model does not address. Classic theories of
strain hardening are based on ideal entropic rubber elasticity
models [24] which appear to be fundamentally flawed (see sec-
tions 2.4 and 7.3).

1.2. Modern theories

This topical review focuses solely on recent theories
formulated for deeply supercooled polymer liquids and glasses;
we also discuss two generic models that have been explicitly
applied to interpret polymeric phenomena. Interesting
approaches not covered include the potential energy landscape
paradigm [25, 26], ideal mode coupling theory (MCT) [27, 28],
elastic shoving models [29], shear transformation zone
theory [30], kinetically constrained models [31, 32], and
the soft glassy rheology model [33]. We consider four

3
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Figure 2. Schematic alpha relaxation time as a function of inverse temperature. The four regimes of relaxation are: high-temperature
Arrhenius (purple), crossover (orange) (green), deeply supercooled regime (red), and nonequilibrium glass regime (blue). Boundaries between
regimes are demarcated by characteristic times and temperatures. Inset: schematic logarithmic time evolution in the ageing glass of the
normalized: (a) alpha relaxation time, and (b) thermodynamic and mechanical properties.

approaches: (1) random first order transition (RFOT)
theory [34], (2) lattice cluster entropy theory (LCET) [35], (3)
percolated free volume distribution (PFVD) model [36], and
(4) the nonlinear Langevin equation (NLE) activated barrier
hopping theory [37]. The degree of coarse graining, and
extent to which the polymer-specific aspects are accounted for,
varies widely among these theories. Both the RFOT [34] and
LCET [35] have been reviewed in great depth recently, and
hence their basic elements are more briefly discussed.

In section 2, key aspects of the experimental phenomenol-
ogy are summarized. Basic elements of the theoretical ap-
proaches in the equilibrated liquid are discussed in section 3.
Section 4 briefly addresses how these approaches treat het-
erogeneous dynamics. The effect of spatial anisotropy in de-
formed rubbers and oriented melts is the subject of section 5.
Section 6 discusses nonequilibrium relaxation and physical
ageing in the glass. Extension of the polymeric NLE theory
to nonlinear mechanical behavior is the subject of section 7.
The article concludes with a future outlook in section 8.

2. Experimental phenomenology

Excellent reviews exist of the experimental behavior of cold
polymer melts and glasses [1, 3, 8, 9, 38]. Here we summarize
key observations.

2.1. Generic relaxation phenomena

Segmental relaxation can be probed via dielectric spec-
troscopy, NMR, dynamic light scattering, stress relaxation and
other methods, all of which are quantitatively similar and show
essentially identical temperature dependences [1, 11]. The
overall behavior is qualitatively the same as for other glass
forming materials, and a typical relaxation map for fragile
liquids is sketched in figure 2. At high enough tempera-
tures (T > TA) an Arrhenius dependence is often observed,

τα(T ) = τ0 exp(εA/kBT ), where the activation energy de-
pends on cohesive energy and chain stiffness [39]. Over a nar-
row intermediate temperature range, TB ∼ Tc < T < TA,
a rather weak non-Arrhenius behavior emerges for a few or-
ders of magnitude of relaxation time which can be fit to vari-
ous forms, e.g., the MCT critical power law [27] τα(T )/τ0 ∝
(T − Tc)

−�, or the VFT equation (5). Relaxation times at TA

and Tc are roughly material insensitive (10−10±1 s [40] and
10−7±1 s [41], respectively), although this is debatable [3].
At the lower temperatures that define the deeply supercooled
regime, Tg < T < Tc, a steep dependence is observed over
many orders of magnitude which can usually be fit by a VFT
equation or the Bassler–Ferry law [42]:

τα(T )/τ0 = exp[(T ∗/T )2]. (8)

The steepness of the temperature dependence is quantified by
dynamic fragility

m ≡ d

d(Tg/T )
lg[τα(T )]|T =Tg . (9)

The fragility and temperature ratios, TA/Tg or Tc/Tg,
vary over an exceptionally wide range for different poly-
mers [11, 43]. The singularities at TK or T0 deduced by large
extrapolation typically lie 30–80 K below Tg [44]. Time cor-
relation functions that probe segmental relaxation are highly
stretched and can be fit by the KWW expression

C(t) = exp[−(t/τ ∗
α )βK]. (10)

The stretching exponent usually decreases with cooling in a
material-specific fashion, and for polymers is quite small at
Tg [43, 45], βK ∼ 0.25–0.5. Even at high temperature the
relaxation can be nonexponential due to chain connectivity
induced intra-polymer cooperativity [5, 7].

4
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Below Tg the alpha relaxation time generally crosses over
to an Arrhenius form (figure 2). For polymers, the apparent
activation energy decreases by typically a factor of ∼2–4
across Tg [46].4 The common interpretation is the Arrhenius
behavior in the glass is a nonequilibrium effect given the
observation of physical ageing.

2.2. Polymer-specific liquid phenomena

On the most local scales, two highly nonuniversal features
are relevant to segmental relaxation: (i) variable monomer
shape and chemical identity associated with the backbone
repeat unit and (if present) sidegroups, and (ii) chain backbone
stiffness characterized by a persistence length which can vary
by a factor of ∼3–4. A simplifying feature is most synthetic
polymers interact primarily via van der Waals attractions.
Nevertheless, dynamic fragility at Tg varies from m ∼ 45 to
>200 in amorphous polymers, and can be as low as ∼20 for
semicrystalline polymers, a fragility range not observed in any
other material class [11]. This breadth of behavior also applies
to Tg, which varies from ∼150 K to nearly 500 K. Present
experimental understanding of these chemical variations is as
follows [44, 47–49]. (i) Polymers with very stiff backbones
have a high Tg and fragility. (ii) Polymers with highly flexible
backbones and no sidegroups have low Tg and fragility. (iii) If
sidegroups become sterically bulky and/or relatively rigid, then
polymers with flexible backbones become dynamically fragile
and have a higher Tg. The lowest fragility occurs when the
backbone and sidegroup stiffness are very similar.

At fixed chemical structure, glassy polymer dynamics
depends on the degree of polymerization, N , in a finite size
manner which saturates at a material-specific value. Typically,
Tg and fragility monotonically increase with N [48]. The
origin of this N dependence is subtle since conformational,
interchain packing, and thermodynamic properties all vary in a
finite size manner; e.g., density and characteristic ratio increase
with N , while the compressibility decreases.

Based on mechanical measurements, the crossover to the
deeply supercooled regime in polymer melts was historically
called a ‘liquid–liquid phase transition’ [50] at a characteristic
temperature Tll typically ∼15–25% above Tg. Recent
experiments find this temperature is close to estimates
of the empirically-deduced dynamical crossover (MCT) Tc

that signals the onset of the strongly activated dynamics
regime [51, 52]. Hence, the true meaning of Tll is that it
indicates the emergence of transient segmental localization
and a strong elastic response which is of practical materials
processing importance.

Segmental scale dynamic heterogeneity has been probed
using multi-dimensional NMR to extract a length scale, ξh,
near Tg. Experiments have been performed on one polymer,
polyvinylacetate, for which ξh ∼ 3.5 nm [53].

The macromolecular end-to-end vector relaxation time,
τee, is also measurable. Far enough above Tg its temperature
dependence is the same as local segmental relaxation leading
to ‘time-temperature superposition’ (TTS) [44, 49], a form

4 See [46] for a detailed summary of the different measurements of apparent
activation energy changes of polymer melts across the glass transition.

Figure 3. Illustration of anisotropy in bulk polymers for liquid
crystals and strained rubber networks. The segmental orientational
order parameter is denoted as τ or τor, and the macroscopic linear
deformation ratio is denoted as λd.

of dynamical slaving or homogeneity. However, in the
deeply supercooled regime (T < Tc), nonuniversal deviations
increasingly emerge with τee exhibiting a slower increase with
cooling relative to its segmental analog, with deviations at Tg

varying from a factor of ∼3 to >100 in a manner that correlates
with segmental dynamic fragility [54]. This uniquely
polymeric phenomenon can be viewed as heterogeneous
‘decoupling’ of segmental and chain scale dynamics which can
be expressed as a fractional Stokes–Einstein law:

τee(T )/τα(T ) ∝ [τα(T )]−ε (11)

where the exponent [54] varies over a very wide range,
ε ∼ 0.15–0.53. Until very recently [54], only
tentative phenomenological attempts [44, 55] have been
made to understand this striking phenomenon. Experiments
have also shown that the dynamic fragility associated
with macromolecular relaxation is generally both smaller
in magnitude, and less nonuniversal, than its segmental
counterpart [49, 54].

A distinguishing feature of polymers is they can exist
in anisotropic states such as a deformed rubber network
or oriented liquid crystal. Such organizational states are
characterized by a segment orientational order parameter (τor)
and anisotropic macromolecular dimensions (see figure 3).
For crosslinked rubbers, Tg increases upon extension or
compression [38]. Nonuniversal shifts of Tg (up or down)
are observed in polymer thin films, but these represent even
more complicated systems due to the presence of interfaces and
confinement [56].

2.3. Physical ageing

Below Tg a slow approach to equilibrium occurs known as
physical ageing. This process is characterized by a waiting
or ageing time (tage) dependence of thermodynamic, relaxation

5
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and mechanical properties. Properties evolve towards a
more solid-like response [2, 8], e.g., the alpha time or
elastic modulus (diffusion constant) increases (decreases) with
tage. Ageing is particularly important for polymer glasses
since they are used at temperatures often only modestly
below Tg. The temporal evolution of all properties is
sigmoidal [8], although the short and long time behaviors
are usually not experimentally accessible (figure 2). In
the commonly observed intermediate regime, thermodynamic
properties evolve roughly logarithmically with ageing time,
while relaxation times grow as an apparent power law
(∼tμ

age). The ageing exponent, μ, generally increases with
cooling, approaching unity sufficiently below Tg, but then
usually drops rather abruptly at a polymer-specific large
degree of undercooling [2]. The approach to equilibrium
is ‘asymmetric’ since the waiting time evolution depends on
whether the experimental protocol corresponds to an up or
down temperature jump.

2.4. Linear and nonlinear mechanical response

Above Tg, the primary mechanical property studied is the linear
glassy shear (G ′) modulus. However, at the experimentally
accessible timescales it is often unmeasurably small, and ‘turns
on’ rapidly as Tg is approached from above with G ′ ∼ GPa at
the glass transition. Below Tg, the modulus increases much
more weakly as roughly a linear function of temperature akin
to a solid-like response [4, 9].

A primary scientific and engineering interest below Tg

is the nonlinear mechanical response, and the complex
phenomena of yielding, rejuvenation, plastic flow, and strain
hardening [2, 4, 9, 24]. In a constant strain rate experiment,
stress is measured as a function of strain for various
temperatures, strain rates and ageing protocols. A typical
response is shown in figure 4, and four regimes are usually
observed. (1) Linear elastic response at low strain with
a temperature-dependent modulus of order a GPa. (2) A
local (yield) stress maximum, indicating ‘strain softening’ at
strains γ ∼ 2–10%. (3) A ‘plastic flow’ regime where a
plateau yield stress (∼10–100 MPa typically) emerges that is
nearly independent of strain but depends strongly (weakly) on
temperature (strain rate). (4) At very large strains, polymers
massively deform and the stress rises sharply leading to ‘strain
hardening’ which is of great practical importance with regards
to avoiding fracture, shear banding, crazing and other failure
mechanisms [4, 24]. The yield stress and hardening modulus
both increase with cooling and strain rate.

If a mechanical test is done very quickly after a quench,
physical ageing and so-called rejuvenation effects can be
avoided [9]. The resulting stress–strain curve has all the same
qualitative features as in figure 4 except the local maximum
that cleanly defines a yield stress and strain is absent, and the
stress increases monotonically with strain.

Direct measurement of the segmental (alpha) relaxation
time in a polymer glass under active deformation has been
recently achieved [57–60]. The alpha time initially decreases
strongly with applied stress and strain in a complex and rate-
dependent fashion, and then increases in the strain hardening
regime [58, 60].

Figure 4. Typical stress–strain curves for a constant strain rate
mechanical experiment below Tg. The red dot indicates the yield
point and four regimes are marked by numbers. The dashed and
dash–dot curves show the effect of temperature and strain rate,
respectively. The curves follow from the NLE theory for PMMA
glass with rejuvenation included [114], but are presented here as only
an illustration of the experimental behavior.

3. Cold polymer liquids

We now discuss recent theories in the equilibrated isotropic
liquid state. The primary focus of this section is the mean alpha
relaxation time.

3.1. Configurational entropy theories

Modern configurational entropy theories involve major
extensions of the Adams–Gibbs picture. Their central concern
is the alpha relaxation time, not time correlation functions or
mechanical properties. We discuss two approaches: (i) the
generic random first order transition (RFOT) theory, and (ii) the
polymer-specific lattice cluster entropy theory (LCET), both of
which have been reviewed in depth recently [34, 35].

3.1.1. Random first order phase transition theory. The RFOT
approach is a mesoscopic entropy crisis theory which employs
mode coupling, density functional and spin glass concepts [34].
Vitrification is described analogously to crystallization but in
terms of a set of statistically distributed aperiodic structures.
The highest relevant temperature is TA where molecules
become transiently caged, which is equivalent to a simplified
version of MCT where an aperiodic structure persists forever.
Relaxation can occur within finite regions (clusters or ‘entropic
droplets’ of diameter ξ ), where particle locations change on a
small Lindemann length scale (∼0.1d). The theory is based
on a local free energy landscape where finite barriers separate
distinct disordered structures. Rearrangements are entropically
favored due to the combinatorial entropy associated with
amorphous packing degeneracy, but entail a free energy cost
due to a ‘mismatch penalty’ for accommodating a rearranged
particle cluster into an environment composed of localized
neighbors.

6
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Figure 5. Schematic illustration of the RFOT mosaic picture [34].
Left panel shows the droplet free energy as a function of number of
rearranging particles. Right panel indicates the small scale particle
rearrangements associated with two aperiodic packings in a domain
of diameter ξ . Such a domain model is also relevant to the PFVD and
NLE approaches.

The number of rearranging particles at the transition state
is determined in the spirit of a nucleation calculation (figure 5)
that involves a favorable bulk driving force quantified by the
droplet configurational entropy, and an unfavorable interfacial
free energy deduced by a combination of density functional,
‘fluctuation-induced wetting’, and universality of Lindemann
parameter arguments. The total free energy as a function of
domain radius (R) is

F(R) = −4

3
πT Sc(T )R3 + 4πγ0

(
d0

R

)1/2

R2 (12)

where d0 is an interparticle spacing, and the second term is the
renormalized interfacial free energy which scales more weakly
than as surface area. The mean relaxation time is computed
as a simple activated process and has the classic VFT form of
equation (5) where

Sc(T ) = �C̃ p(T )

(
T − TK

TK

)
(13)

FB = kBT D
TK

T − TK
(14)

D = 27π

16

nkB

�C̃ p(T )
ln2

(
αL R2

0

πe

)
. (15)

Here, FB is the barrier, αL is the square inverse of the
Lindemann ratio, and �C̃ p(T ) is the specific heat jump per
unit volume at the glass transition. The typical droplet diameter
is

ξ ∝ d0

(
DTK

T − TK

)2/3

(16)

which differs from the classic AG model. The relaxation time
diverges at TK.

RFOT theory directly relates thermodynamics to slow
dynamics. To obtain precise predictions requires the
configurational entropy and a definition of ‘elementary units’
that maps real molecules onto the model. Polymer properties
such as monomer shape and backbone persistence length do
not enter explicitly, and a priori computations of TA or Tg have
not been performed. RFOT does accurately predict dynamic

fragility with melting entropy as input [61]. It has been
applied to explore the combined effects of temperature and
pressure on relaxation for a Lennard-Jones fluid [62]. A largely
phenomenological effort has been recently made to combine
RFOT theory with a schematic version of MCT to provide a
unified description of the crossover and deeply supercooled
regimes [63].

Recent analysis [64] suggests the RFOT theory is only one
of many possible entropy crisis approaches based on spin glass
ideas. Outstanding questions include how to go beyond mean
field theory via droplet constructs and how the interfacial free
energy scales with droplet radius, issues which can strongly
impact the form of the alpha relaxation time.

3.1.2. Lattice cluster entropy theory. The DiMarzio polymer-
specific entropy crisis theory [14–16] makes many predictions
for the variation of the Kauzmann temperature with molecular
weight, chain topology, backbone stiffness, crosslinking and
other characteristics based on a mean field lattice model, which
are qualitatively similar to the experimentally observed trends
for Tg. However, the true meaning of TK and relevance of
the vanishing entropy postulate remains controversial. The
LCET [35, 65–68] attempts to surmounts these difficulties
by assuming glass formation is driven by a critically
small (not zero) configurational entropy computed using the
equilibrium lattice cluster theory [69]. The latter includes
short range packing correlations due to chain connectivity,
monomer shape, and backbone and sidegroup semiflexibility
within a united atom framework. The major predictions of
this molecular-level polymer theory include the temperature
dependence of Sc, the relaxation time, and characteristic
temperatures.

Polymers are typically modeled as belonging to three
classes: FF (flexible backbone and sidegroups), FS (flexible
backbone, stiff sidegroups), or SF (stiff backbone, flexible
bonds). Chains with stiff backbones or sidegroups have lower
configurational entropy density, while flexible sidegroups
plastify the polymer. The monomer configurational entropy
density increases monotonically with temperature, while the
site configurational entropy density passes through a maximum
and decreases at both high and low temperatures (figure 6).
This distinction, which rests on the thermal dependence of the
density, is key to the formulation of the LCET.

Four characteristic temperatures are introduced based on
the site configurational entropy density. The highest is the
onset of the glassy regime, TA, where Sc is a maximum. The
glass transition temperature, Tg, is identified with a critical
root-mean-square particle displacement estimated via a critical
excess free volume, or alternatively as when the relaxation
time attains a threshold value. An intermediate crossover
temperature, Tc, is the inflection point in the temperature
dependence of configurational entropy which separates two
regimes of entropy evolution. It is identified with the empirical
MCT temperature, a supposition supported by agreement
between experimental and calculated estimates of Tc/Tg.
Finally, an ideal glass transition temperature, T0, signals when
the configurational entropy extrapolates to (not literally equals)
zero.

7
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Figure 6. Schematic illustration of the configurational entropy per
site predicted by the LCET theory [35] as a function of temperature,
with characteristic temperatures marked, for polymers with flexible
side chains (blue, left curve) and stiff side chains (red). Dashed
curves are the corresponding configurational entropy/mol.

The structural relaxation time is given by the Adams–
Gibbs relation, equation (4), where the high-temperature
activation energy is related to the empirical MCT temperature
via the (nearly) universal crossover relaxation time observed
experimentally [41]: �μ/kB ≈ (7 ± 1)TMCT. A critical power
law fit can describe LCET calculations over a range of 60–70 K
with a polymer stiffness-dependent critical exponent � ∼ 2.1–
2.8. The temperature dependence of the relaxation time of
many polymers can be collapsed onto a universal form via the
reduced parameter

X = Tc/T − 1

Tc/Tg − 1
(17)

as seen experimentally for polymer melts and other glass-
formers [70].

The characteristic temperatures and fragility grow with
molecular weight, saturating for long chains. Glassy behavior
is enhanced by increased backbone or sidegroup stiffness
due to the larger excess free volume of inflexible bonds.
Flexible polymers have larger characteristic temperature ratios
(Tc/Tg, etc) corresponding to their lower fragility. Theoretical
estimates for the apparent VFT fit parameters compare well
with experiment, and the pressure dependence of the relaxation
time can be naturally calculated. The experimental chemical
structure trends for Tg and fragility discussed in section 2.2
are qualitatively well captured by the theory. The unifying
concept that emerges is that local interchain packing controls
the fragility to leading order.

3.2. Percolation free volume distribution theory (PFVD)

The free volume model has been extended to include spatial
domains and a distribution of relaxation times in conjunction

with a physical ansatz that associates the alpha relaxation
with percolation of slow domains [36, 71, 72]. Density
fluctuations (via liquid compressibility) are the source of
spatial heterogeneity with domains distinguished by their
density (figure 5). No explicit account is taken of polymer
stiffness or monomer shape, which enter implicitly via an
equation-of-state and empirical parameters in equation (3)
which is viewed as a bare ‘monomer’ relaxation time.

The PFVD model has been extensively applied to polymer
melts [71, 72] using a van der Waals model for equilibrium
properties where the key energy scale is set by the cohesive
energy density. A ‘dynamical’ free volume fraction is
introduced and defined as

�ρ̃ ≡ ρmax − ρeq

ρmax
. (18)

Here, ρeq is the equilibrium bulk density, and ρmax is the
T = 0 random close packing (RCP) density, but in practice
is used as a fit parameter which is significantly smaller. The
free volume distribution in a spatial domain of volume Vc is
assumed to be determined by spontaneous equilibrium thermal
density fluctuations

P(δρ) ∝ exp[−(δρ)2κT Vc/2ρ2
eqT ] (19)

where δρ = ρ − ρeq and κT is the isothermal compressibility.
Bulk relaxation is postulated to be controlled by percolation
of slow domains (∼10%) corresponding to upwards density
fluctuations on the few nm scale, and the observed (mean)
alpha relaxation time is determined by the timescale associated
with this percolation. This approach differs from the Cohen–
Grest percolated-FVM which adopts a binary fluid and solid
cell model [73].

Two competing relaxation mechanisms enter the PFVD
model. (i) Monomer hopping at fixed local free volume which
occurs on a timescale that increases strongly as the local
density grows and is the dominant process for self-diffusion

τmonomer = τ0 exp

(
θ

�ρ̃

)
(20)

where θ ∼ 1. Only jumps of the slowest 10% monomers
contribute to relaxation. (ii) Collective density fluctuation
relaxation, which is dominant for monomer relaxation of
slow particles, and can be viewed as a type of ‘dynamic
facilitation’ [31] where constraints on a slow monomer are
released by diffusion and relaxation of faster neighboring
subunits. The collective relaxation time for a domain of N
particles is associated with diffusion on the domain scale and
is given by [72]:

τlife(N) ∼ τ0 N2/3 exp

(
θ

�ρ̃ + b�ρ̃N−1/2

)
(21)

where b ∼ 1. The relevant number of elementary units, Nc,
corresponds to the smallest length scale at which τlife(N) is
equal to, or larger than, the monomer relaxation time. Density
fluctuations on smaller scales are irrelevant since they are too
short lived. A consequence of the competition between single

8
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particle hops and collective relaxation triggered events is there
are two long time cutoffs of the relaxation time distribution
associated with the percolation process and a faster subunit
‘dynamic melting’ process.

The PFVD model has been quantitatively applied to
predict how pressure modifies glassy relaxation of flexible
polymers with low internal barriers, and good fits to
experimental data are obtained [72]. The theory has been
generalized and applied to the thin polymer film glass
transition problem [74], including a recent variant relevant
to polymer nanocomposites [75]. The large and spatially
long range confinement effects observed are suggested to be
a consequence of mobility percolation.

3.3. Nonlinear Langevin equation theory (NLE)

3.3.1. General formulation. The nonlinear Langevin
equation theory (NLE) is a first principles statistical
mechanical description of single particle motion formulated
at the level of molecules and forces [76, 77]. It is built on
a locally solid-state view of highly viscous dynamics which
employs and extends ideas of MCT and dynamic density
functional theory. The approach was initially formulated in
a fully microscopic and physically-motivated, but heuristic,
manner for spherical particle fluids, and subsequently derived
from time-dependent statistical mechanics [78]. The two
key approximations are: (i) the dynamical caging constraints
experienced by a tagged particle are treated in an average
manner via the radial distribution function, g(r), or structure
factor, S(q), and (ii) a local equilibrium approximation at the
dynamical variable, not traditional ensemble-averaged, level
is adopted which relates one and two body dynamics and
provides a nonGaussian closure at the single particle level. The
physical idea underlying the latter simplification is that there
exists a high degree of dynamical correlation between pairs
of particles which preserves local structural correlations in the
highly viscous regime [78].

The central premise of NLE theory is that MCT accurately
describes the onset of transient localization, but the ideal
kinetic glass transition is destroyed and rendered a crossover
by an activated barrier hopping process which controls the
low-temperature or high volume fraction regime that smoothly
emerges from the precursor regime. If hopping is ignored,
a simple ‘naı̈ve’ version of MCT (NMCT [76, 79]) for the
single particle localization length (rloc) is recovered which is
quantified by the long time limit of the force–force correlation
function on a tagged particle within an amorphous Einstein
solid model. The NLE theory does not invoke thermodynamic
or kinetic divergences at nonzero temperatures or volume
fractions below RCP [80]. Its single particle nature implies
neglect of a class of dynamical collective density fluctuations
(typically called ‘feedback’ in the MCT language) that are
important in the precursor regime [27, 81] and perhaps beyond.

The central object of the theory is a closed, overdamped
nonlinear Langevin equation of motion for the instantaneous
scalar displacement of a particle from its initial location, r(t),
the qualitative form of which resembles Kramers theory [82]

or model A:

ζs
∂r(t)

∂ t
= −∂ Feff[r(t)]

∂r(t)
+ δ f (t) (22)

where the random force satisfies 〈δ f (0)δ f (t)〉 = 2kBT ζsδ(t),
and ζs is a short time friction constant. The ‘dynamic free
energy’ is the key object and consists of two contributions

β Feff(r) = −3 ln(r) −
∫

d�q
(2π)3

ρC2(q)S(q)[1 + S(q)]−1

× exp

{
−q2r 2

6
[1 + S−1(q)]

}
(23)

where β ≡ (kBT )−1, C(r) is the direct correlation function,
and S(q) the collective static structure factor. The second
term in equation (23) describes interparticle caging forces
that favor transient localization. Its non-Debye–Waller part is
called the ‘vertex’ which quantifies the mean square amplitude
of dynamical constraints on a length scale ∼2π/q [83].
The NLE theory has been quantitatively applied to fluids of
spherical and nonspherical rigid objects [85, 86] in an ab initio
manner, both analytically using Kramers theory and Green–
Kubo formulae [76, 77, 84, 85], and via trajectory simulation
solution of equation (22) which allows dynamical nonGaussian
effects to be determined [81, 86–88].

3.3.2. Extension to polymer melts. Polymer melts are
chemically complex, exhibit nonuniversal short time dynamics,
and have connectivity induced local dynamical correlations.
For these reasons, the NLE theory analog for polymer melts
is more primitive, and is based on a statistical segment
description [37, 89, 90]. To a first approximation, the
dynamical consequences of chain connectivity beyond the σ

scale are ignored corresponding to a ‘liquid of segments’
description. An analytic ‘Gaussian thread’ chain model is
adopted [91]. At the segment level the sub-nm structural and
interaction potential length scales are averaged over, resulting
in a site–site direct correlation function C(q) = C0, and
collective structure factor S−1(q) = S−1

0 + 1
12 q2σ 2, where

S0 ≡ S(q = 0) = ρkBT κ = (−ρC0)
−1 is the dimensionless

isothermal compressibility which quantifies nanometer and
beyond thermal density fluctuations, σ = √

C∞l, and ρσ 3 ∼
0.7–1.5 is the reduced segmental density. At this lightly
coarse grained level, Feff(r) is determined entirely by a single
material-specific ‘coupling constant’

λ ≡ 1

ρσ 3S3/2
0

(24)

which increases with cooling or pressure, and involves
only experimentally measurable equilibrium quantities. An
example of the dynamic free energy is shown in figure 7.

Minimization of the nonequilibrium free energy with
respect to the single segment displacement, or dropping the
thermal noise term in equation (22), yields a self-consistent
localization equation for the NMCT glass transition which
occurs at λc = 8.32. Polymer theory and experiment
suggest [37] a simple temperature dependence for S0:

S−1/2
0 = −A + (B/T ) (25)
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Figure 7. Dynamic free energy as a function of segmental
displacement of the NLE theory [37] for polyvinylacetate at coupling
constants (from top): λ = 8 (Tc/T ∼ 0.99), 12 (Tc/T ∼ 1.11), 16
(Tc/T ∼ 1.20). Also schematically shown is a Gaussian chain with
each segment experiencing a dynamic confinement potential. Inset:
Barrier height (units of kBT ) as a function of the coupling constant
with critical power law fit of equation (27).

where A > 0 is of order unity, and typically B ∼ 700–1300 K
which correlates with monomer polarity and cohesive energy.
Combining equations (24) and (25) gives a first principles
prediction for the crossover or ideal MCT temperature

Tc = B

A + (λcρσ 3)1/3
. (26)

A priori calculations of Tc yield experimentally reasonable
results [37, 89].

In the full NLE theory with thermal noise of equation (22)
there is a smooth crossover to the deeply supercooled regime
below Tc where collective barriers emerge due to interchain
forces. The inset of figure 7 shows the barrier height, FB,
as a function of the coupling constant. Calculations are well
described by a critical power law form:

β FB ≈ c(λ − λc)
�, c ∼= 0.4, � � 1.4. (27)

Although the barrier height is a universal function of the
dimensionless coupling constant, its temperature dependence
is material specific.

3.3.3. Alpha relaxation time and shear modulus. Above
Tc, dynamics is viewed as an intra-segment-scale Arrhenius
process with a relaxation time τ0(T ) ≡ τ0 exp(εAkBT ), where
τ0 ≈ 10−14±1 s is a vibrational timescale and εA is a local
activation energy [37]. Below Tc, the intra-segment dynamics
is treated as the fast process that sets the timescale for the alpha
relaxation. This motivates a minimalist model that smoothly
bridges the normal and supercooled regimes:

τα(T ) = τ0 exp

(
εA

kBT

)
exp

[
ac FB(T )

kBT

]
. (28)

Equation (28) ignores a narrow intermediate temperature
regime that bridges the Arrhenius and deeply supercooled
regimes, and in this sense it does not clearly distinguish
between TA and Tc (but full numerical solution of the NLE
does [86–88]). The local activation energy is determined by
adopting the recent proposition [41] of a (nearly) universal
‘magic relaxation time’ at the dynamical crossover given
by τ0(Tc) ∼= 10−7±1 s; this condition yields: εA

∼=
(16.1 ± 2.5)kBTc for τ0 ≈ 10−14 s. Alternative ‘calibrations’,
such as a nearly universal relaxation time at TA of ∼10−10 s,
do not change key predictions [89].

In reality, short range equilibrium correlations along the
chain due to backbone stiffness are expected to introduce an
‘intrachain cooperativity’ of the barrier hopping event. To
crudely model this polymeric effect in a non-first-principles
manner, a material-specific (but temperature-independent)
cooperativity parameter, ac, is introduced resulting in an
effective barrier of ac FB [37, 90]. Physically, ac is the
number of dynamically correlated segments along the chain,
which can be estimated by equating the end-to-end distance
of the dynamically cooperative segment (

√
acσ ) to the Kuhn

or persistence length thereby yielding ac = C∞ or ac =
(C∞ + 1)2/4C∞, respectively; since C∞ ≈ 4–10, ac ∼ 1–10.
The characteristic ratio generally increases with chain length,
which implies the intuitive trend of a finite size increase of the
cooperativity parameter as chains get longer.

The NLE theory yields sensible predictions for Tg based
on the experimentally-relevant criterion τα(Tg) = 10x s where
x = 2–4. The breadth of the glassy regime, Tc/Tg, varies
over a wide range of ∼1.1–1.5 depending mainly on chain
stiffness via the local cooperativity parameter. The numerically
computed relaxation times can be well-fit over many orders
of magnitude by commonly-used empirical multi-parameter
functions including the VFT and Bassler–Ferry laws, despite
the fact the NLE theory has no kinetic singularities at nonzero
temperature [89]. An example of the role of chain stiffness
on the temperature dependence of the relaxation time is shown
in figure 8 for atactic polymethylmethacrylate (PMMA). The
dynamic fragility at the glass transition increases from ∼60
(Tg = 326 K) at ac = 1, to ∼120 (Tg = 378 K) at ac = 5, with
the latter in good agreement with experiment [46].

The dynamic fragility depends on chemical variables
primarily through S0(T ) and chain stiffness via ac. Since
the equation-of-state properties of most polymers are rather
similar, the origin of the large range of dynamic fragilities
(m ∼ 45–180) observed experimentally is predicted to be
primarily a consequence of variable backbone stiffness. A
statistical correlation has been shown to apply for many
polymers [90]:

m ≈ 16 + 40.6a0.56
c . (29)

Because the characteristic ratio (ac) generally decreases as
chains get shorter, the dynamic fragility decreases as N gets
smaller, as often observed [48, 49]. The theory also suggests
the long chain limit of fragility is controlled by saturation of
the characteristic ratio (CN → C∞) and attainment of full
Gaussian statistics.

A universal form for the temperature dependence of the
scaled alpha relaxation time in the deeply supercooled regime
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Figure 8. Relaxation time as a function of normalized (by Tg for
ac = 5) inverse temperature for PMMA. Above Tg results are shown
for several values of the cooperativity parameter. The below Tg

results are under quenched glass conditions for ac = 5 for several
values of the frozen-in density fluctuation amplitude parameter, b;
the uppermost curve is the equilibrium extrapolation.

is predicted [37, 89]:

lg
[
τα(T )/τα(Tc)

] = cX ν (30)

where X quantifies the distance from the dynamic crossover as
defined in equation (17), the exponent ν ∼= 1.4 ± 0.1 depends
weakly on the dynamic crossover time and temperature range
analyzed, and c is a constant. Equation (30) corresponds
to a non-analytic, supra-Arrhenius temperature dependence
that transcends all material details of the theory (segmental
density, compressibility parameters A and B, cooperativity
parameter, crossover relaxation time, etc). Its basic form,
including the magnitude of effective exponent, is in accord
with experiments [70]. A corollary is the breadth of the
deeply supercooled regime controls fragility as: m ∼= b/[1 −
(Tg/Tc)], where b ≈ 14 ± 2 for τα(Tc) = 10−7±1 s and
τα(Tg) = 100 s. The consequences of elevated pressure have
been tentatively investigated [90]: equation (30) continues to
hold, Tc/Tg decreases with pressure, and hence the fragility
increases, trends in agreement with most, but not all, polymer
experiments.

Since the NLE theory is formulated at the level of
forces and particle positions, mechanical properties such
as the glassy elastic shear modulus G ′ due to interchain
stresses can be calculated using the standard Green–Kubo
formula [46, 92]; an example for PMMA is shown in figure 9.
The dimensionless modulus G ′kBTσ−3 ≈ 1 at the dynamic
crossover temperature, and is roughly equal to the Rouse
shear modulus due to chain conformational entropy [46]. This
result provides a zeroth order understanding of why Tll ∼ Tc

signals the onset of non-entropic elasticity in cold polymer
liquids [50]. Below Tc, the modulus increases exponentially,
G ′kBT σ−3 ∼ exp(aTc/T ) where a ∼ 12. At Tg, the
dimensionless modulus is ∼60–70, which corresponds to ∼1–
3 GPa, the correct experimental magnitude and a common
mechanical definition of a glass [90].

Figure 9. Elastic shear modulus for PMMA (ac = 5) as a
function of temperature. Below Tg corresponds to the quenched glass
for two values of the frozen-in density fluctuation parameter. Inset:
log–linear plot in the deeply supercooled melt regime (Tg < T < Tc).

The mapping of a real polymer chain onto the coarse
grained Gaussian segment level, and its implications for the
collective structure factor, has been discussed [92]. The
simplification C(q) ∼ C(q = 0) applies for inverse
wavevectors larger than of order a nanometer. The atomistic
level S(q) of polymer melts determined from experiment,
simulation and theory do have the generic form of being
nearly constant beyond nm (segmental) length scales. The
sensibility of the adopted space–time coarse graining approach
was analytically established by demonstrating the wavevector
dependence of the vertex in equation (23) is identical
at the segment and more atomistic levels. This point
was demonstrated numerically by showing good agreement
between the vertices of the Gaussian thread and freely jointed
chain (FJC) models [92]. In contrast to the Gaussian thread
model, a dense melt of FJC polymers is characterized by
a nonzero monomer diameter, local chain persistence, short
range oscillatory interchain order, and a wide angle cage peak
in S(q).

4. Dynamic heterogeneity effects

Dynamic heterogeneity (DH) and cooperativity, two distinct
concepts that are not definable at the same level of
precision, are important features of deeply supercooled
dynamics [93, 94]. Whether DH is a ‘side show’ [93]
to a dynamical mean field theory of alpha relaxation, or
the dominant physics of glassy dynamics, continues to be
debated. At zeroth order, models separate into two categories
depending on whether DH is viewed as a dynamically
emergent phenomenon or as a consequence of a (quasi) static
domain picture where thermodynamically controlled local
fluctuations lead to a distribution of barriers and relaxation
times. The theories discussed in the present article largely fall
in the latter category, and figure 5 is relevant.
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4.1. Configurational entropy theories

Dynamical heterogeneity in RFOT theory is due to the mosaic
droplet structure with domains treated as effectively static
and non-interacting to leading order [34, 95]. The free
energy barrier for rearrangement varies between droplets
due to equilibrium spatial fluctuations of the configurational
entropy. The characteristic length scale of equation (16),
or number of cooperatively rearranging elementary units,
grows strongly with decreasing temperature. Stretched
exponential relaxation approximately follows as a consequence
of a Gaussian barrier height distribution with a variance
proportional to the configurational entropy fluctuation squared.
The corresponding stretching exponent is [95]:

βK � [1 + (F̄B/2
√

D)2]−1/2 (31)

where the fragility parameter D is given by equation (15), and
βK decreases significantly with temperature. RFOT predicts
a direct relation between a larger D and a smaller stretching
exponent, which has statistical support from experiments [43].
A static domain model does not allow high barriers to
be destroyed via the relaxation of surrounding low-barrier
regions. The simplest incorporation of such a ‘facilitation’
effect [31, 32] is the high-barrier portion of the distribution is
replaced by a delta function at its most probable value. RFOT
has recently been semi-empirically combined with a simple
version of MCT to address the time dependence of the entropic
droplet barrier distribution [63].

RFOT predicts translation–rotation decoupling [96]. The
translational diffusion constant is determined by a static
average over the distribution of local inverse relaxation times
which becomes increasingly larger compared to the inverse
of the mean relaxation time as the distribution broadens.
Decoupling grows with cooling, and increases in magnitude
at Tg as the liquid becomes more fragile, trends consistent with
experiment.

In the explicitly polymeric LCET approach the length
scale associated with dynamical heterogeneity is the Adams–
Gibbs cooperatively rearranging region comprised of z∗ ≡
s∗

c /sc elementary units. The CRR grows with decreasing
temperature from z∗ = 1 at TA, to z∗ ∼ 2 at Tc, to z∗ ∼ 4–
5 at Tg. Motivated by the observation of transient clusters of
mobile particles in glassy colloidal suspensions and simulation
models of glassy fluids, the theory considers DH in the context
of equilibrium polymerization [35]. The idea is that the
temperature evolution of dynamically correlated regions is a
clustering process similar to the activated formation of chains
from monomers. In the normal fluid regime, as at the beginning
of a polymerization reaction, there is no clustering. During the
reaction (supercooled liquid regime) the system is composed of
chains or strings with a distribution of lengths, corresponding
to a distribution of dynamic clusters. Saturation of the
polymerization reaction corresponds to the glass transition at
which the system falls out of equilibrium.

4.2. PFVD theory

Dynamic heterogeneity arises from the distribution of
relaxation times due to variable density domains. The PFVD

model predicts the domain size, or number of cooperatively
rearranging units (Nc), monotonically increases upon cooling.
Numerical applications to polymers yield Nc ∼ 100–700 at Tg,
but these estimates are sensitive to unknown prefactors and the
ambiguity of what an ‘elementary unit’ is for polymers [74].

The theory also predicts temperature-dependent
relaxation–diffusion decoupling based on the postulate that
only the slowest 10% of moving elements contribute to relax-
ation, which heavily weights the long time part of the distri-
bution. In contrast, mass transport is dominated by the fastest
relevant timescale controlled by a short time cutoff, and the dif-
fusion constant scales as the average of the inverse relaxation
time. Applications to probe motion in cold polymer melts have
been carried out and agreement with experiment demonstrated
based on multiple fitting parameters [74].

4.3. NLE theory

There are two sources of heterogeneity in the NLE theory,
which have been thoroughly worked out for hard sphere fluids
and colloidal suspensions [86–88, 97]. The essence of the
results applies to polymer melts, although this has not been
fully documented in the literature.

The first DH mechanism arises even when the dynamic
free energy is uniquely defined (spatial homogeneity of caging
constraints). The reason is activated hopping is driven
by thermal noise fluctuations, resulting in a distribution
of hopping times corresponding to purely temporal DH.
Consequences include weakly nonexponential relaxation,
diffusion–relaxation decoupling, exponential tails in the van
Hove function, growing dynamical correlation lengths, and
large nonGaussian parameters [86–88]. For a generic time
correlation function, the Poissonian hopping time distribution
that applies for high enough barriers results in nonexponential
relaxation [86]:

C(t) =
∫ ∞

0
dτα

τα

τ̄ 2
α

e−τα/τ̄α e−t/τα = K2(2
√

t/τ̄α/3) (32)

where K2 is the incomplete Bessel function of order two. At
long times this is a stretched exponential with a temperature or
volume fraction independent exponent of βK = 0.5.

A second origin of DH is based on the (quasi) static
domain model with density fluctuations and equation (19). The
cooperativity domain diameter, ξ , is qualitatively identified
with the density fluctuation correlation length [97], ξ ∼ 2(d +
ξρ) ∼ 3–6 nm. A crucial feature is ξ is independent of
temperature or volume fraction to leading order, which seems
consistent with both potential energy landscape analyses [26]
and attempts to understand segmental friction factors in binary
polymer blends [98], but is very different from the AG-like
picture that underlies the configurational entropy theories.

For hard sphere fluids the consequences of the Gaussian
barrier distribution model have been worked out in detail [97].
The mean relaxation time is only modestly enhanced by
fluctuations. Fractional Stokes–Einstein (FSE) decoupling of
relaxation and diffusion is predicted (at the segmental scale for
polymers) corresponding to

D ∝ 〈τ−1
α 〉 ∝ 〈τα〉−ε ε ≡ 1 − δ

1 + δ
, δ ≡ σ 2

F

2F̄B
(33)
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where δ is the dimensionless ratio of the barrier fluctuation
variance to the most probable barrier height. Nonexponential
relaxation approximately emerges with a stretching exponent
that decreases as the degree of decoupling grows:

βK � 1√
1 + ln(r)

, r ≡ 〈τ−1
α 〉〈τα〉 (34)

where the decoupling factor, r , increases with cooling or
volume fraction.

Perhaps the most interesting consequence of this domain
model is for the decoupling of segmental and chain end-to-end
relaxation and TTS failure discussed in section 2.2. The idea
is that on the macromolecular scale, space–time heterogeneous
dynamics is averaged over, while on the nm scale relevant to
the segmental alpha process it is not. A testable prediction has
been made for the decoupling exponent in equation (11) [54]:

1

ε
� 1 + δ−1

[(m − 16)/40.6]1/0.56
(35)

where equation (29) has been used. This result is in
excellent agreement with experiments for δ ∼ 0.1–0.2,
reasonable values based on a priori estimates, and provides a
possible mechanism for the observed strong coupling between
segmental fragility and the FSE exponent [54]. This theoretical
perspective also provides a basis for the experimental
observation that the dynamic fragilities of the macromolecular
scale relaxation process are both smaller and much less
variable than their segmental relaxation analogs [49, 54].
However, this explanation of TTS failure remains tentative in
the sense that full consistency of the physical picture with other
DH signatures remains to be demonstrated.

How the two DH mechanisms discussed above might be
combined to produce a unified description within the NLE
framework remains an open question. We note a recent
empirical modeling attempt to describe temperature-dependent
stretched exponential relaxation in a variety of cold polymer
melts that combines an ad hoc VFT-based static domain model
with intrinsic dynamical fluctuation effects [45].

5. Bulk anisotropic polymer materials

Macroscopic anisotropy is a distinguishing feature of poly-
meric fluids. The simplest class is spatially homogeneous
liquid crystals and deformed rubber networks, both charac-
terized by structural anisotropy at the segmental and macro-
molecular levels (figure 3). Conformational anisotropy in-
duces anisotropic interchain correlations and density fluctu-
ations. To understand the latter requires theories that link
anisotropic structure and dynamics. Recent progress in this
direction has occurred based on the polymer NMCT and NLE
approaches [99], which are rendered predictive based on the
anisotropic polymer reference interaction site model (PRISM)
integral equation theory [100, 101]. How the scalar Tc or
Tg change requires understanding the subtle question of how
anisotropic dynamical constraints are ‘averaged over’.

Polymer NMCT predictions for the dynamical crossover
temperature have been worked out based on two coupled self-
consistent equations for the localization lengths (rloc,‖ �= rloc,⊥)

which involve different force–force correlations with ‘vertices’
that reflect the spatial anisotropy [99]. The latter enters the
dynamical calculation in two distinct manners: (i) the critical
value of the coupling constant, λc of equation (24), and (ii)
the dimensionless compressibility (S0 = −1/ρC0 in the long
chain limit), which both depend on the order parameter and
nature of the anisotropy.

5.1. Liquid crystals and oriented melts

In a nematic or discotic polymer liquid crystal, or if a
polymer melt is subjected to an external electric or magnetic
field, segmental bond vectors undergo alignment with distinct
parallel and perpendicular components relative to a director,
σ‖ �= σ⊥ �= σ0 (where σ0 is the isotropic melt value), quantified
by the order parameter:

τor =
〈

3 cos2(θ) − 1

2

〉
. (36)

Here θ is the angle between a segmental bond vector and the
director, and the order parameter is positive in nematics (0 <

τor < 1) and negative in discotics (−0.5 < τor < 0) (figure 3).
The macromolecular length scale, Ree, is also anisotropic but
its consequences can be neglected to leading order [99]. Chain
conformation is described as a directed Gaussian random
walk with different step lengths: σ‖ = σ0(1 − τor) and
σ⊥ = σ0

√
1 + 2τor, respectively [100]. For excluded volume

interactions, PRISM theory predicts chain orientation results in
an increase of the amplitude of collective density fluctuations.
The reason is that alignment reduces the degree of chain
interpenetration and hence repulsive interchain contacts, in
analogy with the Onsager theory of liquid crystallinity. This
results in a decreased driving force for glass formation. On
the other hand, the anisotropic static structure factors that enter
NMCT reduce λc which favors glass formation. Numerical
studies [99] find the former effect is dominant, resulting in
a reduction of Tc with alignment which grows as roughly a
parabolic function of τor. For typical material parameters,
normalized reductions are (Tc(τor) − Tc(0))/Tc(0) ∼ 5% for
τor ∼ ±0.2, and ∼15% (23%) for 0.4(−0.4). Definitive
experiments or simulations to test this prediction remain to be
performed.

5.2. Strained rubber networks

Anisotropic PRISM and NMCT theories have been developed
for crosslinked rubbers [99, 101]. The network is treated as a
liquid on length scales smaller than the mean distance between
junctions, and N is identified with the network strand length,
Nx . A volume conserving uniaxial deformation modifies the
end-to-end vectors affinely:

Ree,‖ = λd Ree,0, Ree,⊥ = λ
−1/2
d Ree,0 (37)

where λd is the macroscopic deformation ratio (figure 3).
Strain introduces tiny segmental orientation, but its conse-
quences on dynamics is very small [99].

PRISM theory predicts strain (compression or extension)
monotonically reduces the amplitude of long wavelength
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density fluctuations (S0), and more so as segmental density
increases or Nx decreases. On the other hand, the critical
value of the NMCT coupling constant, λc, is almost unchanged
even at large deformations. Hence, the effect of deformation
on Tc is dominated by bulk modulus hardening (smaller S0).
This results in the opposite dynamical behavior of that found
for liquid crystals: an increase of Tc which grows nonlinearly
with the amplitude of deformation |λd − 1| in a manner that
is not symmetrical for tension and compression. For typical
flexible chain networks the effect is modest; for example,
at λd ∼ 4, Tc increases by 5–6% if Nx ∼ 100–200.
Overall, the predicted trends seem consistent with experiment
although much more precise and systematic measurements and
simulations are needed to draw quantitative conclusions.

6. Nonequilibrium relaxation and physical ageing

Below Tg, freshly quenched samples generally exhibit
an Arrhenius alpha relaxation time. As waiting time
increases, glass structure evolves towards equilibrium, and
thermodynamic, relaxation and mechanical properties become
time dependent. Simulations of glassy polymers find the
consequences of physical ageing for macroscopic properties
are consistent with activated dynamics on the local segmental
scale [23].

6.1. Configurational entropy theories

In RFOT theory the initial quenched glass is at ambient
temperature for vibrational motions and the fictive temperature
(Tf = Tg) at the configurational level [102]. In each
domain only two states are relevant: quenched or equilibrated
with relatively shorter or longer relaxation times, respectively.
A macroscopic sample evolves (quasi) continuously due to
many small discontinuous changes of the fictive temperature
which are driven by both configurational entropy and the
energy difference between aperiodic packing states. The alpha
relaxation time in the quenched glass gradually transitions
to an Arrhenius form with the apparent activation energy
decreasing with cooling until saturation at a temperature which
depends mainly on TK/Tg. The specific form can be expressed
in the Narayanaswamy–Moynihan–Tool [17] framework as:

τα = τ0 exp

[
χNMT

�E∗

kBT
+ (1 − χNMT)

�E∗

kBTg

]
(38)

where �E∗ is the equilibrated activation energy at Tg, and the
temperature-dependent ‘nonlinearity parameter’ 0 � χNMT �
1. As opposed to phenomenological theories, the nonlinearity
parameter can be calculated from the droplet surface tension,
heat capacity jump, configurational entropy, Tg and TK. RFOT
then predicts a direct connection between the nonlinearity
parameter and dynamic fragility: m ∼ 19/χNMT, which
agrees rather well with data for many polymer glasses [103].
The KWW stretching exponent is predicted to decrease with
cooling below Tg. Currently, the RFOT theory has not made
predictions for the temporal ageing of the alpha relaxation time
or other properties.

The lattice cluster entropy theory has been combined with
a polymerization (string) view of dynamic heterogeneity [35].
When the excitation chain polymerization saturates, the
entropy becomes constant. This is a distinctive mechanism
for the crossover of the alpha relaxation time to an Arrhenius
form at low temperatures. A melt supercooled more slowly
has fewer and larger clusters, and reaches the ageing regime at
a lower temperature. This trend is in analogy with the fact that
polymerization occurs with a higher activation barrier in order
to form fewer total chains.

6.2. Percolated free volume distribution model

The PFVD model describes ageing based on the nonequi-
librium evolution of the domain density probability dis-
tribution function, p(ρ) [103]. A thermodynamic force
(d/dp) ln(p/peq) is assumed to drive the system towards equi-
librium. Based on master equation and Onsager regression type
of ideas, a Fokker–Planck equation is proposed:

∂p

∂ t
= ∂

∂ρ

[
γ (ρ)peq(ρ)

∂

∂ρ

(
p

peq

)]
(39)

where γ (ρ) is a diffusion constant in density space which
depends on the entire distribution. This diffusion constant is
related to the rate of single particle relaxation and collective
density fluctuation lifetime within the percolation model
framework.

The relaxation time distribution function shifts towards
longer times and undergoes complex shape changes with
waiting time. Apparent power law ageing of the
alpha relaxation time and logarithmic variation of volume
are predicted at intermediate ageing times for polymer
glasses [103]. However, little change of the apparent exponent
with temperature occurs in the shallow quench regime. High
asymmetry between up and down temperature jump ageing
experiments is predicted due to different time evolutions of
the density distribution and dynamic coupling between fast and
slow domains (facilitation). The Kovacs memory effect [104]
has been studied corresponding to the observation that the
time evolution of the glass when it is heated depends on its
history and initial nonequilibrium state. The ability of the
theory to describe this phenomenon is intimately related to the
distribution of relaxation times and domain picture.

6.3. NLE theory

Extension of the NLE theory to treat the alpha relaxation
process below Tg is based on the assumption that the
dimensionless density fluctuation amplitude, S0, continues
to be the relevant slow variable and caging constraints
are quantified by its nonequilibrium value [47, 105].
From a landscape perspective, the compressibility has two
contributions: vibrational motions (intrabasin) and larger scale
structural rearrangements (interbasin) [106]. Below Tg the
second process is effectively turned off after a rapid quench,
resulting in an abrupt change in the temperature dependence
of S0. The latter has been extensively studied for polymer
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Figure 10. Normalized dimensionless density fluctuation amplitude
as a function of temperature for PMMA under quenched conditions
and full equilibration. Inset: ageing of S0(t) in a normalized format
per equation (41) after a rapid quench to the indicated temperature.

glasses using small angle scattering5. The generic behavior
found is: (a) sufficiently far below Tg, S0 ∝ T as in a
vibrating harmonic solid; (b) S0 saturates at a nonzero value at
very low temperature due to a frozen-in component of density
fluctuations, which can be quantified as S0(T → 0) ≡ bS0(Tg)

where b ∼ 0.4–0.75. This motivates a minimalist, one
parameter form for the dimensionless density fluctuations in
the quenched glass [46]:

S0(T ) = bS0(Tg) + T

Tg
(1 − b)S0(Tg). (40)

A numerical example for PMMA is shown in figure 10.
The elastic modulus and relaxation time of a freshly

quenched (non-ageing) glass have been studied [46]. Figure 9
shows that below Tg the thermal dependence of the shear
modulus is nearly linear as observed experimentally. Figure 8
demonstrates there is a crossover of the alpha time to
an effectively Arrhenius form below Tg with an apparent
activation energy that depends on the frozen density fluctuation
amplitude. The ratio of activation energies across Tg, R ≡
E+

A /E−
A , varies from ∼2–6 as b increases, broadly consistent

with experiments6. The Arrhenius behavior is a consequence
of the nonequilibrium, solid-like nature of density fluctuations
in a freshly quenched glass.

To describe physical ageing, a first order kinetic
model [105] is proposed for the dynamic order parameter,
S0(t), which evolves from its nonequilibrium quenched value
(t = 0) given by equation (40) to the smaller equilibrium value,
S0,l :

dS0(t)

dt
= − S0(t) − S0,l

τα(t)
. (41)

The physical idea is the rate of change at an ageing time t is
linearly proportional to how far the system is from equilibrium,

5 See [46] for a detailed summary of experimental measurements of the
amplitude of long wavelength density fluctuations in polymer glasses.
6 See [46] for a detailed summary of the different measurements of apparent
activation energy changes of polymer melts across the glass transition.

Figure 11. Log–log plot of relaxation time ageing at three quench
(down jump) temperatures for PMMA glass (Tg = 378 K, b = 2/3).
One result for an up jump experiment from an equilibrated state at
365–370 K is shown in red. Inset: apparent ageing exponent
evaluated at the indicated time after the quench as a function of
degree of undercooling.

and equilibration proceeds via activated barrier hopping which
is self-consistently determined by S0(t) via equations (24), (27)
and (28). Equation (41) is devoid of adjustable parameters. Its
solution can be written in a normalized time integral form

S0(t) − S0,l

S0(0) − S0,l
= exp

{
−

∫ t

0
[dt ′/τα(t ′)]

}
. (42)

The inset of figure 10 shows the ageing of S0 in a
normalized format. The time evolution is logarithmic at
intermediate times, with a slope that decreases with cooling.
Analogous calculations for the shear modulus and cohesive
energy density have been performed with similar logarithmic
behavior albeit with property-dependent effective slopes [92].

The sigmoidal time evolution of the alpha time for various
cooling depths is shown in figure 11. The equilibration time
(plateau) increases extremely rapidly with cooling, and is
roughly equal to the relaxation time of the final equilibrium
state. A good power law behavior, τα(t) ∝ tμ, occurs
at intermediate times where the ageing exponent depends
strongly on temperature initially, then slowly approaches
unity from below, and varies weakly with the frozen density
fluctuation amplitude parameter. The exponent μ is determined
assuming all timescales are accessible. At sufficiently
low temperature, experiments often find a material-specific
sharp downturn of the apparent ageing exponent [2]. This
nonuniversal behavior has been suggested to originate from
the limited time window that experiment can access, i.e. the
power law intermediate regime lies beyond the observable
timescale [105]. Model calculations in the inset of figure 11
illustrate this point, and the onset of the downturn and
the breadth of the plateau are sensitive to the observation
timescale. Overall, the theoretical predictions for μ(T ) agree
well with measurements on several polymers [92, 105].7

7 See [92] and [105] for a description of the ageing experiments that
determined the apparent exponent against which the theory has been compared.
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The fictive temperature concept has been discussed
and its temporal evolution calculated [92]. A strongly
asymmetric ageing response for up and down temperature
jump experiments is also predicted, as illustrated in figure 11.
Dynamic heterogeneity has been empirically investigated by
introducing a stretched exponential form into the evolution
equation for S0(t). The apparent ageing exponent is smaller
if βK < 1, but its temperature dependence is only weakly
affected. As presently formulated, the NLE theory does not
address the classic Kovacs memory effect.

7. Nonlinear mechanical response in glasses

The nonlinear mechanical behavior of polymer glasses is
extremely rich. At present, it appears that the only predictive
theory at the segmental level is the NLE barrier hopping
approach, which is the subject of this section.

7.1. Effect of stress on relaxation and elasticity

The NLE theory of stress-induced acceleration of segmental
relaxation builds on the analogous approach originally
developed for colloidal glasses [107]. An applied stress
(τ ) induces a constant external force on a tagged segment
in equation (22) given by: f = cσ 2τ , where c is of
order unity. The coupling constant, λ, is taken to be
unmodified by deformation, i.e. stress does not change
glass density nor density fluctuation amplitude. The fast
relaxation process τ0(T ) is assumed to be deformation
independent. These simplifications appear to be good
first approximations [21, 108]. Moreover, simulations find
segmental dynamics is accelerated in an isotropic manner,
and there exists a tight coupling between local dynamics and
mechanical response [23, 109, 110].

In contrast to the Eyring model [18], stress enters at a
microscopic dynamic variable level. This idea is equivalent
to modeling deformation as a mechanical work type of
contribution to Feff(r) which depends on the instantaneous
segment displacement. A key consequence is stress reduces the
barrier for hopping and accelerates relaxation (figure 12) [21],
and can mechanically drive a glass-to-liquid transition in
a manner qualitatively consistent with landscape simulation
studies [111, 112]. The inset of figure 12 shows deformation
destroys the barrier at an ‘absolute yield stress’, τabs. The shear
modulus is also reduced with applied stress due to a growing
localization length [21].

7.2. Constitutive equation and yielding

A constitutive equation has been constructed in the Maxwell
model spirit that can treat any mechanical deformation
(oscillatory shear, step strain, creep, and constant strain rate),
and which requires as input only the elastic modulus and
mean alpha time from the NLE theory [108]. Here the ideas
are explained in the context of elongation and compression
experiments and Young’s modulus E(t) � 2.8G(t). The

Figure 12. Log–linear plot of stress-induced reduction of the alpha
relaxation time of PMMA (Tg = 378 K, b = 2/3). Inset: dynamic
free energy as a function of reduced segmental displacement under
stress at Tg − T = 30 K; its inset shows a doubly normalized plot of
the barrier as a function of applied stress which is nearly temperature
independent.

starting point is the Boltzmann superposition principle:

τ (t) =
∫ t

0
E(t − t ′)γ̇ (t ′) dt ′ (43)

where γ̇ (t) is a time-dependent strain rate. Equation (43) is
adopted as a plausible ansatz by introducing a deformation-
dependent modulus that obeys a first order kinetic equation:

dE(t; τ (t))

dt
= − E(t; τ (t))

τα(τ (t))

E(t − t ′) = E ′(τ (t ′)) exp

(
−

∫ t

t ′
dt ′′τ−1

α [τ (t ′′)]
)

.

(44)

This is of the classic ‘effective time’ form, and implies:

τ (t) =
∫ t

0
dt ′ E ′(τ (t ′)) exp

{
−

∫ t

t ′
dt ′′τ−1

α [τ (t ′′)]
}
γ̇ (t ′).

(45)
Equation (45), plus the stressed versions of equation (28)
and the Green–Kubo formula for the modulus, comprise a
self-consistent, nonlinear description of mechanical response,
elasticity and relaxation [108]. A ‘granular-like’ limit of
interest is γ̇ τα → ∞ corresponding to no thermally-induced
activated hopping on the experimental timescale.

For a constant rate experiment the strain γ ≡ γ̇ t , and the
stress–strain relation is

τ (γ ) =
∫ γ

0
dγ ′ E ′(γ ′) exp

{
−

∫ γ

γ ′
dγ ′′ 1

γ̇ τα[τ (γ ′′)]
}
. (46)

Plastic flow corresponds to dτ/dγ = 0, which determines the
dynamic yield stress as

τy = γ̇ (E ′(τy)τα(τy)). (47)

If the product of the strain rate and relaxation time at dynamic
yielding, (γ̇ τα)y , is much less than unity, then the post-yield
material is locally equilibrated on the segmental scale.
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Figure 13. Stress–strain curve under compression for PMMA glass
at a strain rate of 0.001 s−1 and T = Tg − 50 K. Inset: stress–strain
curves as a function of the rubber elasticity strain measure
g(λ) = λ2 − λ−1 for (solid) strain rate of 0.001 s−1 and Tg − T (top
to bottom) of 90, 70, 50, 30 and 10 K, and (dashed) at fixed
T = Tg − 50 K for strain rates (top to bottom) of 10−1, 10−2, 10−3,
10−4, 10−5 s−1.

Stress–strain curves for PMMA (‘plexiglass’) are shown
in figure 13. All the regimes observed experimentally (see
figure 4) are captured with the exception of the local maximum
at the yield point. The yield strains and plateau yield stresses
are well predicted as a function of temperature and strain rate,
and even the absolute magnitudes are quite accurate [21, 108].
In the absence of strain hardening, the alpha relaxation time
in the yield plateau regime is independent of strain; figure 14
shows this relaxation time decreases with strain rate at various
temperatures, with a tendency to converge at high rates.
The inset shows the product (γ̇ τα)y varies with temperature
and strain rate. In all cases, (γ̇ τα)y < 1, indicating
local equilibration on the segmental scale which becomes
increasingly well satisfied at higher temperatures or lower
strain rates.

The overall behavior in figure 14 is in good agreement
with recent experiments and simulations including the
ability to create master curves based on a reduced strain
rate [58, 60, 108, 109]. The theory has also been worked out
for, and applied to, constant stress creep and creep recovery
experiments [113]. The absence of a local yield stress
maximum in figure 13 reflects the fact that the calculations
were performed under rapid quenching conditions where
ageing and rejuvenation effects are absent. Generalization of
the theory to include the latter two coupled phenomena has
been recently achieved [114].

7.3. Strain hardening

At high strains, polymers massively deform resulting in
a large and uniquely macromolecular increase of stress
known as ‘strain hardening’ [4, 9, 24, 115–117]. Classic
theories of strain hardening are based on a postulated
analogy with the equilibrium elasticity of crosslinked rubber
networks corresponding to dominance of an entropic stress
of single strand (intramolecular) origin [24, 115]. Such

Figure 14. Log–log plot of the relaxation time of PMMA glass
(Tg = 378 K) in the yield plateau regime (in the absence of strain
hardening) as a function of strain rate. Inset: product of the
relaxation time at yield and the corresponding strain rate as a
function of cooling depth at various rates.

models can fit the observed strain amplitude dependence of
stress, but the underlying assumptions are highly questionable
since interchain forces control the yielding phenomenon.
Indeed, recent experiments and simulations have shown the
entropic network model is fundamentally incorrect in multiple
ways [115–121]; for example, the strain hardening modulus
is orders of magnitude larger than the rubber elasticity
modulus, increases with cooling (not decreases as for entropic
elasticity), and is deformation rate dependent. Simulations
suggest the hardening modulus scales with yield stress [118].
Recent experiments [122] find the local structure of deformed
glass is nearly isotropic, and affine deformation/anisotropic
conformations occur only beyond a length scale ∼3–4 nm.

A segmental scale dynamical theory of strain hardening
has been developed [123]. The new ‘glass physics’ mechanism
proposed is that external deformation induces anisotropic chain
conformations, which modifies interchain packing, resulting
in suppression of density fluctuations and intensification of
localizing dynamical constraints and activation barriers. The
resulting stresses are of intermolecular origin.

The starting point of the theory is the strain representation
of the constitutive relation, equation (46). Conformational
distortion modifies the constraints encoded in the dynamical
free energy. Following the ideas sketched in section 5, for a
volume conserving affine uniaxial extension or compression
(macroscopic deformation ratio λ) the intrachain and collective
structure factors can be written as a function of deformation
amplitude or true strain γ = ln(λ). Since the force correlations
that determine Feff(r) are controlled by local contributions, the
dominant effect of chain anisotropy on the vertex is simply
S0(1) → S0(λ), suggesting the form of the constitutive
equation (to leading order) remains the same. To determine
this key quantity, note that in the relevant post-yield regime
the glass appears locally equilibrated, i.e. (γ̇ τα)y � 1. This
suggests the deformation modification of density fluctuation
amplitude can be computed as in a rubber network for which
PRISM theory provides a good description on length scales
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below rX = √
NX σ , where NX is the number of segments

between (effective) crosslinks. For glasses, rX is identified as
the scale beyond which the system is dynamically an affinely
deforming solid (rX ∼ 3–4 nm, NX ∼ 16 for PMMA [123]).
The dimensionless density fluctuation amplitude then hardens
(increases) under deformation as:

S0(λ)

S0(1)
� 1

1 + 3
√

S0(1)

16NX

(
λ2+2λ−1

3 − 1
) . (48)

The physical origin of strain hardening is suppression
of density fluctuations due to anisotropic conformations and
interchain packing which increases the constraining mean
square forces, thereby prolonging segmental relaxation and
enhancing the elastic modulus, resulting in an increase of
stress. Calculations for PMMA are shown in figure 13 under
compression for several temperatures and strain rates. The
hardening modulus, G R , is extracted from the slope of the
stress versus rubber elasticity strain measure (g(λ) ≡ λ2 −
λ−1) plot. Detailed numerical studies suggest the theoretical
predictions for the magnitude, temperature, and deformation
rate dependence of the hardening modulus are consistent with
measurements and simulations, although much work remains
to be done to fully confront the theory and experiment [123].

8. Future challenges

Much theoretical progress has occurred over the past decade
in understanding both the generic and chemically-specific
aspects of slow segmental dynamics in cold polymer liquids
and nonequilibrium ageing and/or stressed polymer glasses.
Nevertheless, the construction of a unified and comprehensive
statistical dynamical theory for macromolecular materials
remains in its relatively early stages. We close this article with
an incomplete list of some of the critical open problems from
our perspective.

(1) A fully dynamical mean field theory that can compute time
correlation functions in addition to the alpha relaxation
time, for realistic models of polymer chains, remains
to be developed. In the spirit of multi-scale modeling,
such a theory should treat the polymer as a connected
sequence of elementary units that interact via effective
potentials which reflect the underlying shape, stiffness
and chemical diversity of real macromolecules. The
role of local intrachain cooperativity in determining the
alpha process can then hopefully be addressed in a first
principles manner.

(2) Purely temporal dynamic heterogeneity effects should be
elucidated for polymeric materials, especially in light of
the demonstration that they result in large nonGaussian
dynamical effects in colloidal suspensions and hard sphere
fluids [81].

(3) Integration of the segmental relaxation theory with a
description of chain dynamics on longer time and length
scales is necessary to develop a full understanding of
supercooled polymer melts. In particular, the ‘glass-
to-rubber’ dynamical crossover [5, 44] remains poorly
understood.

(4) More rigorous microscopic theories are needed for the
origin of ‘domains’ (and their lifetime) in equilibrated
polymer liquids that presumably underlie some dynamic
heterogeneity phenomena associated with spatial variation
of structure and/or thermodynamic properties. In addition
to predicting domain size, its thermal dependence,
and its effect on relaxation, a fundamental framework
for determining correlations between the relaxation of
neighboring domains is needed. The latter can be viewed
as a mesoscale dynamic facilitation [31] or constraint
release [5] phenomenon. Moreover, how the seemingly
different mechanisms of quasi-static spatial disorder and
stochastic activated hopping dynamical disorder (temporal
heterogeneity) can be combined in a consistent and unified
manner remains open.

(5) The temporal evolution of spatial heterogeneity and
dynamical domains in quiescent nonequilibrium ageing
polymer glasses needs to be understood.

(6) A full theory for the dynamically anisotropic aspects of
alpha relaxation in oriented polymer liquids and deformed
rubbers is needed. Extending such a theory to create
a molecular scale understanding of confinement and
interfacial interactions in polymer thin films and grafted
polymer layers is a major challenge.

(7) A unified theory for the nonlinear mechanical response
of polymer glasses should include both the average
and dynamically heterogeneous physics for all the
coupled competing effects that underlie the stress–
strain curve in figure 4: (a) physical ageing, (b)
stress-induced acceleration of relaxation, (c) post-
yield ‘rejuvenation’ associated with mechanically-induced
structural disordering, (d) high chain deformation and
strain hardening. A particular challenge is to understand
why in the post-yield regime the segmental dynamics
appears to become far more homogeneous [58].

Finally, a new direction ripe for attack is to build on recent
progress in developing microscopic theories of activated glassy
dynamics in particle (colloid) and polymer systems to treat
dense mixtures of flexible coils and hard nanoparticles, ma-
terials known as polymer nanocomposites [124]. Fundamental
questions abound for these hybrid materials due to strong in-
terfacial cohesive interactions between polymers and particles,
large size asymmetry between species, geometric confinement
effects, and the tunable complexity of spatial structure and ag-
gregation state [125].
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